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SUMMARY 
We discuss in this paper the numerical simulation of compressible viscous flows by a combination of finite 
element methods for the space approximation, an implicit second-order multistep scheme for the time 
discretization and GMRES iterative methods for solving the non-linear problems encountered at each time 
step. Numerical results corresponding to flows around aerofoils and aerospace vehicles illustrate the 
possibilities of these methods. 
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1. INTRODUCTION 

In Reference 1 we discussed the numerical solution of the compressible Navier-Stokes equations 
by operator-splitting methods. In this paper we consider the solution of the same problem by 
methods which are in a sense more implicit since they are based on a time discretization by an 
implicit second-order multistep scheme. This scheme is combined with finite element methods for 
the space discretization and with a GMRES algorithm with preconditioning to solve the non- 
linear problems encountered at  each time step. 

An important issue which is discussed here is the necessity (at least with the centred space 
approximations used here) to use different finite element approximations for velocity and density. 
The necessity for such a compatibility condition, which is well known in the incompressible case, 
has been discussed for a simple compressible case in Reference 2; from the numerical experiments 
of Section 6, this compatibility condition seems also to be required for more complicated 
compressible flows. 

In addition to the experiments of Section 6, the methods discussed in this paper are used to 
simulate flows around aerofoils and (three-dimensional) aerospace vehicles. 
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2. THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 

Let R c RN ( N  = 2 , 3  in practice) be the flow domain and r be its boundary. The non-dimensional 
conservative form of the equations is given by 

(1) 

(2) 

(3) 

a P  - + v ' pu = 0, 
at 

aPu -+ V * ( p u  @ U) + V p  = - [Au + f V ( V .  u)] ,  
1 

at Re 

Re 
ae -+ V . ( e+p)u  
at V .  [u( -3V - u+ Vu +Vu')] 

with p ,  u and T the density, velocity and temperature variables respectively. 
The pressure obeys the ideal gas law 

P = (Y - l)P&, 

e = pe + p l ~ 1 ~ / 2 .  

(4) 

( 5 )  
The above equations express the conservation of mass, momentum and energy. We normalize the 
temperature T by (u,Iz/c,, implying that 

and for the total energy e we have 

T =  E .  (6) 
The constants Re, Pr  and y are the Reynolds number, the Prandtl number and the ratio of specific 
heats respectively (y = 1.4 in air). 

From (1H6) we can deduce the following non-conservative form of the Navier-Stokes 
equations: 

(7) 

- + ( u * V ) u + ( y - l )  - V p + V T  = - - - [ A u + ~ V ( V - U ) ] ,  (8) 

- + u * V T + ( y - l ) T V . u =  __ -AT+F(Vu)  , (9) at 

a P  
- + u * vp + pv * u = 0, 
at 

a U  1 
at (: ) Rep 

Rep r Pr ) 
aT 

where (4H6) still hold. 
For three-dimensional flows we have u = (u, u, w} ,  and F(. )  in (9) has the following expression: 

In this paper we will consider mainly the non-conservative form (7H10) of the equations written 
as a function of the primitive variables; in this case the expression of the different terms is much 
simpler. 

Boundary and initial conditions have to be added. 
We consider external flows; the domain of computation is described in Figure 1. Let rm be the 
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n 

Figure 1. Computational domain 

far-field boundary of the domain; we introduce then 

r, = {XIXEr,, ~ ~ . n < 0 } ,  (1 1) 

I-: = ra\r;, (12) 
where u, denotes the free-stream velocity and n the unit vector of the outward normal to r. 

We assume the flow to be uniform at infinity and the corresponding variables to be normalized 
by the free-stream values. We require on the upstream boundary r, the following conditions: 

p = l ,  (14) 

(15) T = T,= l /y(y-  l)M$, 
where LY is the angle of attack and M ,  denotes the free-stream Mach number. On the downstream 
boundary r: we require Neumann boundary conditions on u and T, i.e. 

and if M ,  < 1 we prescribe also on r: 
p = l .  (18) 

u = 0 (no-slip condition), (19) 
T = Ts = T,[1 +(y- 1)Mi/2] (free-stream total temperature). (20) 

On the rigid boundary rB we shall use the following conditions: 

Finally, since we consider time-dependent equations (even if we are looking for steady solutions), 
initial conditions have to be added; we shall take 

P(X, 0) = PO(X), (21) 

4x9 0) = uo(x), (22) 

T(x, 0) = To(x). (23) 
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3. TIME DISCRETIZATION 

With U = ( p ,  w, e )  for the system (1H5) (we denote w = pu) or U = ( p ,  u, T )  for the system (7H9), 
the unsteady problems to be solved are of the form 

au 
at 
-+ G(U) = 0. 

We introduce fully implicit schemes, either the Euler backward scheme which is first-order 
accurate in time, or a Gear scheme which is second-order accurate. Let At ( > O )  be a time 
discretization step. 

The value U, being given by the initial data (21H23), the Euler backward scheme is described 

uo = u,; (25) 
by 

then, for n 2 0, knowing U", we compute U"+ by 
U" + 1 - U" 

At 
+ G(U"+') = 0. 

On the other hand, the Gear scheme is given by 

uo= u,, 
U' computed by (26); 

then, for n 2 1, knowing U"-' and U", we compute U"+' by 
3U"+ 1 - 4U" + u"- 1 

2At 
+G(U"+')= 0. 

If a steady solution is computed, a local time step is used. 

4. VARIATIONAL FORMULATION 

We consider the non-conservative formulation of the Navier-Stokes equations. At each time step 
of scheme (25), (26) or (27), (28) we have to solve a non-linear problem of the form 

ap+u.Vp+pV*u = g, (29) 

au + (u * V) u + ( y - 1 ) [ Au + 4 V (V * u)] = f, 

= h, 

where a is a positive parameter and f, g, h are given functions, the variables p ,  u, T satisfying the 
boundary conditions (1  3H20). 

We introduce the following functional spaces of Sobolev type: 

Rr = {$I$€H1(a), $ = r on rr}? (32) 
with 

if M, < 1, 
r; i fM,21 ,  

rr = {rm 
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W, = {vlv~(H' (R))~ ,  v = z on r g  u Ti), 
V,= {BIBdl(R), 0 = s on r g  u r;}. 

(33) 

(34) 
If I (resp. z, s) is sufficiently smooth, then R,  (resp. W,, V,)  is non-empty (the above choice for the 
space of the densities R, is motivated by the fact that p will be approximated by continuous 
functions and that the restriction of p to r; makes sense; of course, this supposes implicitly that p 
has some regularity). 

Then an equivalent variational formulation of equations (29H3 1) is 

(35) 

= Jnf*vdx, (36) 

aI*TOdx+ Jn(u-VT)Bdx+(g-l) 

= bhBdx, (37) 

v{4, V, e}ERo X Wo X Vo, {p ,  U, T ) € R ,  x W, x V,, 

where the values of r, z, s are determined by the boundary conditions (13H15) and (18H20). 

5. SOLUTIONS OF THE NON-LINEAR PROBLEM BY PRECONDITIONED GMRES 
ALGORITHMS 

Using appropriate finite element methods, the above non-linear system of equations is reduced to 
a non-linear system of finite dimension. 

Among the various numerical methods which can be used for solving non-linear problems of 
large dimension, let us mention non-linear least-squares methods, since these methods coupled to 
conjugate gradient algorithms have been successfully applied to the solution of complicated 
problems arising from fluid mechanics (see e.g. References 1, 3 and 4 for such applications). 

One of the major drawbacks of the above methods is that they require an accurate knowledge of 
the gradient of the cost function; for some problems this knowledge is very costly in itself (for 
example, this seems to be the case for the compressible Navier-Stc kes equations). Recently, 
several investigators have introduced variants of the above methods which do not require the 
exact knowledge of the gradient. Among these methods, the GMRES (generalized minimal 
residual) has shown interesting possibilities for non-linear problems (see References 
7-9 for the theory and some applications of GMRES in fluid dynamics). 

One of the .first applications of the (non-linear) GMRES algorithm to non-linear problems was 
by Wigton et aL7 They introduced an algorithm which seems quite efficient for solving some 
aerodynamics problems. Brown and Saad6 have formulated this preliminary algorithm in the 
more general context of the inexact Newton methods and have proposed an automatic adjustment 
of the parameters. 



724 M. 0. BRISTEAU ET AL. 

We consider the non-linear problem written as 

F(u) = 0, (38) 
where F is a non-linear operator from RN to RN. 

The main idea of GMRES is to apply a basic Newton algorithm to obtain a solution of (38) and 
to use a linear GMRES algorithm to solve at each step a clever modification of the associated 
Jacobian system. 

Since the costly step (in CPU time and memory storage) in the Newton algorithm is the solution 
of the linear system associated to the Jacobian matrix, a fruitful idea consists of obtaining an 
inexact solution by an iterative method, in practice the linear GMRES.' 

Since the only operations with the Jacobian matrix J(u)  that are required are matrix-vector 
multiplications, we can make the following approximation: 

J ( u ) u  N 9 

F(u  + au) - F(u)  
0 

where CJ is some carefully chosen small scalar.1° 
Finally, we obtain the following algorithm (non-linear GMRES). 

1.  Start: Choose uo and compute F(uo).  Set n=O. 
2. Arnoldi process: 

(a) Choose a tolerance E,.  

(b) For an initial guess &Lo), form rLo)= -Fn-  J , d l p ) ,  where F , = F ( u , )  and 

(c) Compute a, = Ilrlp)l12 and u1 = rL0)/3,,. 
(d) For j = 1 ,  2, . . ., do: 

hi,j = ( J n v j ,  ui), i = 1 ,  2, . . . , j ,  

d j + ,  = J , u ~ -  1 i hi,jui, 

i =  1 

hj+ 1, j =  II d j +  1 112, 

uj+ 1 = d j +  1 /h j+  I , j .  

(e) Compute the residual norm p j  = II F,+ J,dF)Il2 of the solution Sl;" that would be 

(f) If p j  d E,, set m = j and go to step 3. 

(a) Define H ,  to be the (m+ 1) x rn matrix whose non-zero entries are the coefficients hi,j, 

(b) Find the vector y, which minimizes Il/3,el - H,y((,, where el = [l, 0, . . . , O]', over all 

(c) Compute dim) = V,y, and u,+ = u, + S!,'"). 
stop; else set u, c u,+ 

obtained if we stopped at this step. 

3. Form the approximate solution: 

1 < i < j +  1, 1 dj < m, and V,= [ u l ,  u 2 ,  . . . , u,]. 

vectors y in R". 

4. Stopping test: If u,+ is determined to be a good enough approximation to a root of (38), then 

Steps 2 and 3 of the above algorithm are precisely the linear GMRES method for solving the 

n t n+ 1 and go to step 2. 

system J,6  = -F(u,), 
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In order to improve the convergence of the algorithm (see e.g. Reference 8), we have tested and 

(39) 

compared different preconditioners for the solution of (38) by GMRES. We replace (38) by 

S- ' F(u)  = 0. 

We introduce the exact Jacobian matrix of the operator F ,  

A = aF/au, 

and we use as preconditioner, S ,  different approximations of A,  such as 

S, = diag(A), (41) 

where we denote by diag(A) the block diagonal of A, by LDU the standard block factorization of 
A, by (LDU),  the incomplete one and by (LDU), a dynamic incomplete one. 

The factorization (LDU),  is done according to a parameter E.  While doing the factorization, the 
blocks (for instance of row i) are eliminated if they satisfy the absolute criterion 

IlBijll < E 

or the relative criterion 

IIBijll <~IIBiill (0 < E < I), 
where we define the norm I ( .  ( 1  of a block by one of the following norms: 1 1 .  I( ', ( 1 . 1 )  3o or the classical 
Frobenius (or Schur's) norm 1 1 -  ( I F .  

We introduce the following sets: 

K l  = {(i,j)/i#j}, 

K ,  = {(i, j )  there is no T E Y ~  such that i E T  and j E T } .  

For the incomplete dynamic factorization of type i (i = 1,2) during the Gauss factorization, we 
eliminate the A$) blocks satisfying (k ,  j )  E K i  and one of the above two criteria on Bij. 

With this notation we can see the type 1 factorization as an enrichment of diag(A) and the type 2 
as an enrichment of (LDU),. 

For more details concerning the preconditions see Reference 20. 

Remark I 

For the incomplete factorization (LDU) ,  we make the Gauss factorization using only the blocks 
A$) with (i, j )  E K , .  

Remark 2 

In the case of the relative test we have 

Sl;(O) = s,, i = 1 , 2 ,  

s:(l)= s,, 
SZ,(l)= s,. 
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6.  COMPATIBLE FINITE ELEMENT APPROXIMATIONS 

It is well known that for the incompressible Navier-Stokes equations, pressure and velocity 
cannot be approximated independently (see e.g. Reference 11 and references therein). 

Concerning now the compressible Navier-Stokes equations, there has been a natural tendency 
to use the same approximation for all variables, the numerical viscosity of the scheme (due to 
upwinding, artificial viscosity, viscosity introduced via time discretization, etc.) being generally 
sufficient to obtain solutions without oscillations. 

Our aim was, in view of accuracy, to explore the possibility of using a centred Galerkin scheme 
without any viscosity added, at least for moderate Reynolds numbers and for solutions without 
sharp shocks. 

With the same piecewise linear continuous approximations for all variables we have obtained 
satisfying results using the Glowinski-Pironneau solver for the solution of the generalized Stokes 
problem,I2 which is a subproblem of the Navier-Stokes equations. This method implies more 
regularity on the density than, for instance, a Hood-Taylor method; this explains why we obtain 
smooth solutions with the Glowinski-Pironneau solver and spurious oscillations if a 
Hood-Taylor method is used. 

Figure 2. Coarse triangulation Th around NACA0012 
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The same oscillations appear if we solve the Navier-Stokes system by the algorithm defined in 

Let Th be a standard finite element triangulation of 51. We introduce the following discrete 
Section 5 with the same approximations for all the variables. 

spaces (with P,=space of polynomials of degree < k): 

Rrh = { ~ h ~ d h E C 0 ( ~ ) ~  4 h I T E P l r  v T E T h ,  d h  = r h  On rh}3 

wzh= {vhIvhE(Co(a))2, V h l T E P I  x Pi ,  VTETh, vh = z h  on rB u r;], 
Vsh={8h(8hECo(a), 8 h l T E P 1 ,  VTETh, 8h=Sh on r e d , } .  

(45) 

(46) 

(47) 
Then we can write for the discrete problem the algorithm previously defined for the continuous 
one. 

We have considered as a test case the flow around an NACAOO12 aerofoil. We have used first 
the triangulation (800 nodes, 1514 triangles) shown in Figure 2. The test case is a transonic 
calculation at M ,  = 0.8, Re = 73.0, at an angle of attack of 10". The density contours exhibit 
spurious oscillations as shown in Figure 3. 

Let Fh be the triangulation deduced from Th by joining the midpoints of the edges of TE Th. We 
have computed the same test case with Th replaced by F), (as shown in Figure 4). We find again the 
same kind of oscillations on the density contours (Figure 5). 

These oscillations look like the checkerboard oscillations of pressure which appear when the 
same approximations are used for the pressure and velocity variables to solve the incompressible 
Navier-Stokes equations. 

Figure 3. Density contours. PI approximations on the coarse mesh for all variables 
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NODES = 3114 
TXANGLES = 5056 

Figure 4. Fine triangulation y,, around NACA0012 

We have considered the following equations: 

ccp+v-u = g, 

au-pAu+Vp= 0, 

u = O  on r. 

(48) 

(49) 

This system is a subproblem of (29), (30) (or of (30), (31) with p replaced by T )  and is a ‘generalized’ 
Stokes problem. 

If we solve this problem with the discrete spaces defined by (45), (46) we also obtain oscillating 
solutions (see Figure 6 for an example with cc = 1, p = 0.01 and all the variables approximated on 
a triangulation of 31 14 nodes; the figure shows the density contours). 

We define 

@zh = { v h l v h ~ ( c o ( n ) ) 2 ,  V h l F E P ,  x PI ,  V T E  T h ,  v h  = z h  on r,}. (50) 
Then, if we choose 

P h E R r h ,  U h E  @zh, 
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Figure 5. Density contours. P ,  approximations on the fine mesh for all variables 

7 

lj = 0.01 
a = 1. 

Figure 6. Density contours. Simplified problem. PI approximations on the fine mesh for all variables 
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Figure 7. Density contours. Simplified problem. Compatible approximations 

Figure 8. Density contours. P,, P,-iso-P, approximations 

we obtain for problem (48), (49) the satisfying solution shown in Figure 7 (with the triangulation 
for T,, presented on Figure 2). 

This result tends to prove numerically that for problem (48), (49) a compatibility condition 
(some inf-sup ~ondit ion'~)  has to be satisfied by the approximations of the different variables. 
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Figure 9. Density contours. P , ,  P ,  + bubble approximations 

Figure 10. Density contours. PI approximations for all variables 
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Concerning the compressible Navier-Stokes equations (Sections 2 4 ) ,  if we consider the test 
case previously defined with pheRrh ,  TheVsh and U,,E@~,, ,  we also obtain good results for the 
density contours, as shown in Figure 8. We will denote this approximation by ‘ P l ,  Pi-iso-P,’ (the 
velocity has the same number of degrees of freedom as with a P ,  approximation). 

We can also replace m z h  by (this space has been introduced in Reference 14) 

W z h  = ( V h I V h E  (co(fi))2, V h l T E P : ,  x P T T ,  t / T E T h } .  (5  1) 

In (51), PTT is the subspace of P ,  defined as follows: 

PTT = (414 = q1  +A4,, with q1eP1, RER, and $ T e P 3 ,  $T = 0 on aT, $ T ( G T )  = I} ,  (52)  

where G ,  is the centroid of T. A function like 4, is usually called a bubble function. 
If we choose phe Rrh, ThE Vshr UhE W z h ,  a good solution is also computed as shown in Figure 9. 

We will denote this approximation by ‘PI, P ,  + bubble’. 
Concerning the conservative formulation (1H5), some first results prove also the interest of 

compatible approximations to avoid oscillations. 
Some other results are presented in Section 7. They prove numerically that accurate solutions 

can be computed by a centred scheme as soon as a compatibility condition is satisfied by the 
approximations of the different variables (see also Reference 21). 

Some theoretical results have been proved on simplified model problems by Pironneau and 
Rappaz for adiabatic stationary flows2 and by Fortin and Soulaimani.’ 

NODES = 4 1 5 4  TRIANGLES = 9 1 1 2 .  

Figure 11 .  Enlargement of a triangulation around NACA0012 
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7. NUMERICAL RESULTS 

In this section we present some more 2D and 3D results to assess the accuracy and efficiency of the 
method. 

The first result concerns a two-dimensional transonic flow around an NACAOO12 at 
M ,  = 085, Re = 2000, a test case of the compressible Navier-Stokes workshop held in Nice in 
1985.16 With the same P ,  approximations for all variables we obtain again an oscillating solution 
as shown in Figure 10; therefore we have used the P,,  P,-iso-P, and the PI, P ,  + bubble 
approximations of Section 6. With the first type of approximations and the mesh shown in Figure 
11 for the density and the temperature, we have computed the solution described in Figures 12-14 
by the density contours, the Mach contours and the pressure coefficient on the body respectively. 

For the second type of approximations we have used the adapted mesh”-’9 shown in 
Figure 15. The criterion (depending on the solution computed on the mesh of Figure 11) used 
to choose the area to be refined is 

u x V M  
IUI ’ 

where M is the local Mach number. Figure 16 shows the Mach contours and Figure 17 the skin 
friction coefficient. 

Figure 12. Density contours. P , ,  PI-iso-P, approximations 
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'.1- - 0 . 8 5  l e  - 2000 

-0. 5 

-1. :::; 0 

-1.5 
-2 .  0 L I I I I 1 4 I I I 

0. 0 0. 5 1. 0 

Figure 14. Pressure coefficient on the wall. P , ,  P,-iso-P, approximations 

With the two types of approximations, the results are in very good agreement with the results 
issued from the workshop and which can be considered as references. 

The second case deals with an unsteady flow computed with M ,  = 0-6, Re = 5 x lo3, a = 10". 
The time step is At = 0.05. Starting from the free-stream solution, we obtain at about t = 7 the 
solution described by the Mach contours of Figure 18, the isobar contours of Figure 19 and the 
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I NODES = 6 2 3 3  TRIANGLES = 12158 I 

Figure 16 Mach contours P,, P ,  + bubble approximations 



>!- = 0.85 

Re = 2000 

Figure 17. Skin friction coefficient. P , ,  P ,  + bubble approximations 

Figure 18. Mach contours 
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3.0 

1 3 1  

- 
M, = 0.P5, Re = 5.1C3,a = 10" 

tl_ - 0.6 Re - 5.1O3a 

...-- -. 

- 100 

\ _ _ _  

Figure 19. Isobar contours 

I 

0. 0 0. 2 0 4  0. 6 0 8  1. 0 

Figure 20. Pressure coefficient on the wall 

pressure coefficient on the wall of Figure 20. The PI, P,-iso-P, approximation was used for this 
simulation with the mesh of Figure 11. 

The following example concerns a supersonic computation, which has been computed on an 
automatically adapted mesh (Figure 21); the physical criterion used to choose the area to be 
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_.- 

Figure 21. Enlargement of an adapted mesh around NACA0012 

M, = 2., ~e = sno. 

Figure 22. Mach contours 
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M, = 2 . ,  Re = 500 

7 39 

Figure 23. Isobar contours 

// 

= 0.9 

= l o 2  

Figure 24. P ,  approximations 

refined is the gradient of tem~erature.'~-'~ The test case is M ,  = 2, Re = 500. Figure 22 shows 
the Mach contours and Figure 23 the isobar contours. 

In order to show also the necessity of compatible approximations for three-dimensional 
calculations, Figures 24 and 25 compare the density contours of the flow around a sphere using the 



740 M. 0. BRISTEAU ET AL. 

t:-, = 0 . 9  

Re = lo2 

Figure 25. P , ,  P ,  + bubble approximations 

Figure 26. Pressure coefficient. P ,  approximations 
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PI approximations of the PI, P ,  + bubble approximations. The test case is M ,  = 0.9, Re= lo2. 
The second 3D result concerns a flow close to the forebody of the space vehicle Hermes at M ,  = 2, 
Re = lo3. Figure 26 shows the oscillating pressure coefficient obtained with the P ,  approximations 
and Figure 27 shows the (rather coarse) mesh on the body and the pressure coefficient obtained 
with the PI,  P ,  + bubble approximations. 

The remaining results concern the acceleration of the convergence of the non-linear GMRES 
algorithm. 

We have considered three test cases concerning a two-dimensional flow around an elliptic body 
at M ,  = 08.  The time step is At = 0.05 and the dimension of the Krylov space is four. For the first 
test case, at Re = lo3, we use the P , ,  P,-iso-P, approximations with a mesh of 840 nodes for the 
density and the temperature. For the second test case, at the same Reynolds number, we use the 
P,, P ,  + bubble approximations with the mesh defined for the velocity in the previous case (3280 
nodes), for the density and the temperature. The last test case deals with the same approximations 
on the coarse mesh (840 nodes) at Re = 10’. 

Figures 28-37 study the convergence of the preconditioned GMRES algorithm to solve the 
non-linear system at the 1 lth time step. 

Figures 28-30 show the efficiency of the preconditioner S:(E)  according to the value of the 
parameter E for the first test case; for different values of E we study the requested memory, the 
number of iterations and the CPU time. In Figure 28 the number of coefficients of the matrix S ~ ( E )  

Figure 27. Pressure coefficient. P,, P, + bubble approximations 
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Number coef. S3(E) 1 

1 
Number coef. S 

t 

Figure 28. Requested memory versus E 

1 Iter S,(E) 
2 

Iter S. 

c 
8 I I I I I l , l , t r ~ l ~ , l l l , ~  
d b 

0.10 0.a 0.m a.yo O.YI O.M 0.m 0.80 0.90 i.mEE 

Figure 29. Number of iterations versus E 



* I , l l l t l , l l l , ~ , l * l l l  
b 

EPS 
0.10 0.20 0.x)  0.u) 0.50 0.60 0.70 0.0 0.90 1.m 

Figure 30. CPU time versus E 

Number coef. S3(€) 1 

s2 
Number coef .  

1 Number coef. s3(€) 
Number coef .  

s2 

I 
o i  m 

a -  

- 

3 -  

D m -  

- 
- 1  I l l  I l l  I I I I I I I  I B 

@.@I3 @.2@ 8.W @.6@ 13.88 l.I3@ 1.213 1.4I3 I.E@ 1.60 EPS 

- 1  I l l  I l l  I I I I I I I  I B 
@.@I3 @.2@ 8.W @.6@ I3.88 l . U @  1.2I3 1.4I3 I.E@ 1.60 EPS 

Figure 31. Requested memory versus E 
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Figure 38. Convergence history of the global algorithm 

is related to the number of coefficients of S ,  (we have used the absolute criterion and Schur's 
norm). In Figure 29 the number of iterations obtained with S:(E)  is related to the number of 
iterations obtained with S,. In Figure 30 the CPU time obtained with S ~ ( E )  is related to the CPU 
time obtained with S , .  The results obtained with S ,  are shown by the solid lines. We deduce that 
for this test case the value E = 0 3  is nearly optimal it uses the same storage as S ,  and the CPU time 
is divided by two. 

The same study has been done for the second test case with S:(E) compared to S, .  The results 
concerning the number of coefficients of the matrix, the number of iterations and the CPU time are 
shown in Figures 31-33 respectively. For this test case the value E = 1.1  can be taken as optimal, 
with a smaller variation from the results obtained with S ,  than in the previous case. 

In the following figures we compare the convergence history of the algorithm without 
preconditioner and with the preconditioners S, and S:(E)  (with the optimal value of E). Figures 34 
and 35 show for the first test case the convergence histories in terms of the number of iterations 
and the CPU time on an IBM 4381 respectively. The Figures 36 and 37 show the corresponding 
plots for the second test case. These curves show the efficiency of the preconditionings. Note that 
the CPU times necessary for matrix construction and factorization are not taken into account 
since they do not have to be done at each time step. 
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Finally, in Figure 38 we show for the last test case the convergence history of the global 
algorithm (25), (26) using at each time step the GMRES algorithm without preconditioner or with 
the S ,  preconditioner. 

8. CONCLUSIONS 

We have discussed in this paper the numerical simulation of compressible viscous flow by a 
methodology combining finite elements for the space discretization, an implicit second-order 
multistep scheme for the time discretization and a preconditioned GMRES iterative algorithm for 
the solution of the finite-dimensional system encountered at each time step. Numerical ex- 
periments show that using similar space approximations for velocity and density leads to spurious 
oscillations, which disappear if one employs the same type of elements as those used in the 
incompressible case for velocity and pressure. Numerical experiments show that the methodology 
described here provides a good basis for compressible viscous flow calculations. However, there is 
still room for progress and we are presently working on various improvements concerning the 
preconditioning, the approximations and the control of oscillations close to sharp layers and 
shocks. 
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